Cardiovascular Health and Exposure to Ultrafine Particles

Ultrafine PM characteristics

- magnitudes higher particle number concentration & surface area than larger particles;
- can carry large amounts of adsorbed or condensed toxic air pollutants (oxidant gases, organic compounds & transition metals) having proinflammatory effects, partly a result of ROS;
- high pulmonary deposition efficiency;
- translocates into the pulmonary interstitium & then systemically → vascular endothelium.

Hypothesized pathways leading to adverse cardiovascular health effects from exposure to UFP

Background: Time Series Studies

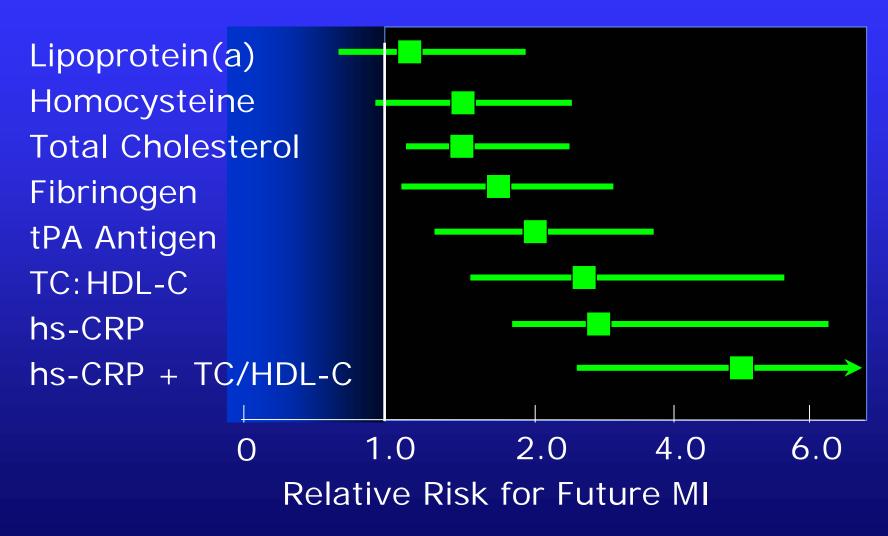
- Daily ambient PM₁₀ & PM_{2.5} mass concentrations have been associated with cardiovascular hospital admissions & mortality:
 - National Morbidity, Mortality and Air Pollution Study in 90 U.S. cities.
 - ◆ 14 U.S. cities: PM₁₀ from mobile source emissions & oil combustion (EPA estimates) showed the strongest associations with cardiovascular admissions vs. fugitive dust (coarse PM), wood burning, coal.

Background: American Cancer Society Cohort Study

- 319,000-500,000 subjects, 16 years followup across all U.S. urban areas.
- 10 μg/m³ increase in PM_{2.5} was associated with 8-18% increases in mortality due to ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest.

Netherlands Cohort Study on Diet and Cancer

- 5,000 persons with 8 years follow-up
- Cardiopulmonary mortality was associated with indicators of traffic-related air pollutants:
 - ◆ living near high traffic density, RR 1.95 (95% CI: 1.09, 3.52)
 - 10 μg/m³ black smoke from background + local (proximity to streets), RR 1.71 (95% CI: 1.10, 2.67)
 - 30 μg/m³ background + local NO₂, RR 1.81 (95% CI: 0.98, 3.34).


Peters et al. 2004 NEJM 351:1721-30

- Case-crossover study of 691 cases of MI,
 Augsburg Registry, subjects surviving at least 24h
 completed a time-activity diary.
- Positive association between reported exposure to traffic and onset of MI one hr later: OR = 2.92 (95% CI: 2.22, 3.83), p < 0.001.</p>
- Little change after adjusting for exercise.
- Most common exposure was in a car, but associations were also found with public transport.

What is driving M&M associations?

- Causal pollutant components and sources?
- Biological mechanisms?
 - ◆ Autonomic dysfunction: ↓HRV, arrhythmias
 - ◆ ↑Inflammation & coagulation/thrombosis
 - ◆ Endothelial dysfunction: vasoconstriction (↓NO / ↑ET-1), upregulation of adhesion molecules.

Relative Risks of Future MI among Apparently Healthy Middle-Aged Men: *Physician's Health Study*

Ridker PM. *Ann Intern Med* 1999; 130: 933-937. ©1999 ACP-ASIM.

Risk Factors for Future Cardiovascular Events: WHS

Ridker PM et al. *N Engl J Med* 2000; 342:836-843.

Lipoprotein(a)

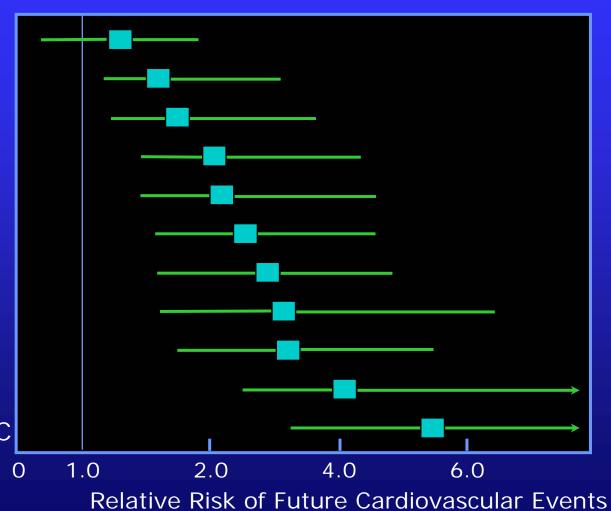
Homocysteine

IL-6

TC

LDL-C

sICAM-1

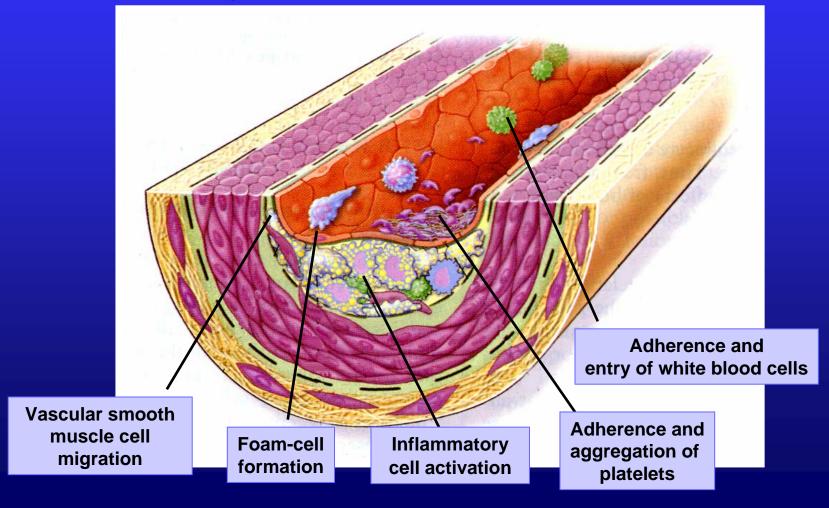

SAA

Apo B

TC: HDL-C

hs-CRP

hs-CRP + TC:HDL-C



PM, Systemic Inflammation & Thrombosis

- Inflammation/endothelial dysfunction may determine plaque stability in CHD:
 - Unstable plaques have increased leukocytic infiltrates
 - T cells, macrophages predominate rupture sites
 - Cytokines and metalloproteinases influence both stability and degradation of the fibrous cap
- PM exposures have been associated with systemic hypercoagulability & inflammation:
 - increased cytokines, acute phase proteins and plasma viscosity.
 - major mechanism: PM-induced oxidative stress.

PM-induced oxidative stress

- ROS from PM → endothelial dysfunction and subsequent acute changes leading to plaque instability and rupture.
- Chronic changes atherosclerosis.

Epidemiologic evidence from acute exposure-response relationships

- Panel Studies, within-individual studies → evidence for possible pathophysiological mechanisms underlying the findings of epidemiologic time series.
- Outdoor fixed site PM exposures have been associated with:
 - systemic hypercoagulability & inflammation: increased cytokines, acute phase proteins and plasma viscosity.
 - decreased heart rate variability (HRV), increased blood pressure, cardiac arrhythmia and ST segment depression during exercise.

Peters et al. 2000 Epidemiol 11:11-17

- 100 subjects in eastern Massachusetts with implanted defibrillators (63,628 person-days of follow-up), ambient air pollution only.
- Defibrillator discharge interventions for ventricular tachycardias or fibrillation (33 subjects) associated with:
 - ◆ 26-ppb increase in NO₂ lagged 1 d,
 OR 1.8; 95% CI: 1.1, 2.9
 - ◆ black carbon & PM_{2.5} confounded by NO₂

Pekkanen et al. 2002 Circulation 106:933-938

- Ambient PM, NO₂, CO exposure and ischemia during submaximal exercise tests in 45 subjects with CHD in Helsinki, Finland
- Significant three times increased risk for ST depression:
 - ◆ 1000 particles/cm³ NC_{0.1-1},
 - ◆ 10,000 particles/cm³ NC_{0.1}. Independent of
 - ◆ 10 µg/m³ PM_{2.5}
 - ♦ NO₂ and CO were also associated.

Riediker et al. 2004 Am J Respir Crit Care Med 169:934-940

- In-vehicle study of 9 healthy male North Carolina Highway Patrol troopers.
- In-vehicle 10 µg/m³ PM_{2.5} increase was associated with:
 - decreased lymphocytes (-11%, p = 0.03),
 - ◆ increased red blood cell indices (1%, p = 0.03),
 - ◆ increased neutrophils (6%, p = 0.04),
 - ◆ increased CRP (32%, p = 0.02), and
 - ◆ increased von Willebrand factor (12%, p = 0.02)
- NO₂ and CO were not significant

Chan et al. 2004 EHP 112:1063-1067

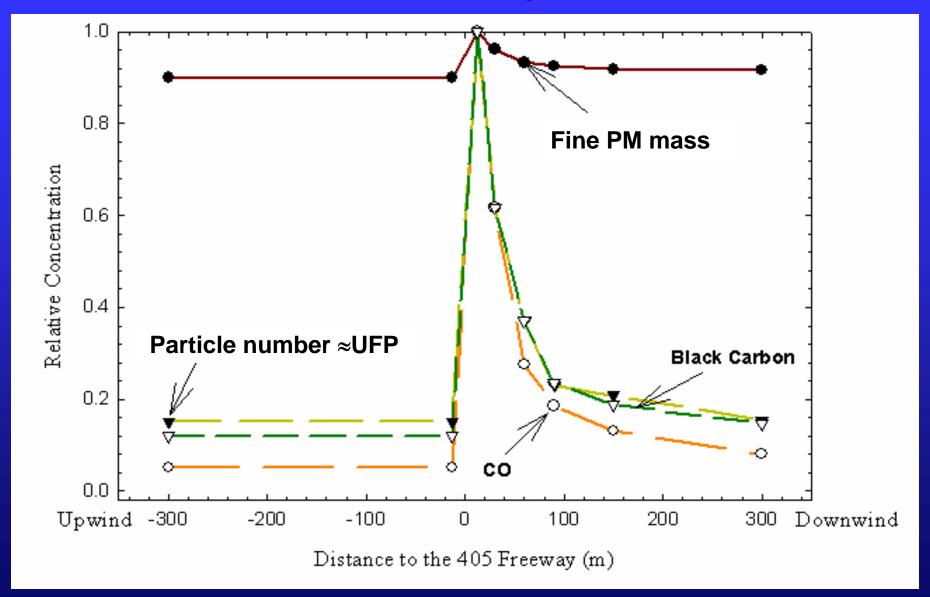
- personal exposure to PN (TSI P-TRAK) and HRV over one 16-hr daytime period in 9 young healthy adults and 10 older subjects with lung function impairments.
- Personal exposure to UFP NC was associated with decreased time-domain and frequencydomain HRV.

Ibald-Mulli et al. 2004 (ULTRA study) EHP 112:369-377

- Subjects with CAD, 37 in Amsterdam, 47 in Erfurt 47 in Helsinki, in-clinic BP biweekly over 6 mo, single-site ambient PM.
- small <u>decrease</u> in systolic BP (0.72 mm Hg) and diastolic BP (0.70 mm Hg) associated with a 5-day mean 10,000 UFP particles/cm³.
- slightly stronger and more significant for 1,000 particles/cm³ PM_{0.1-1.0}
- smaller associations were found for 10 μg/m³ PM_{2.5} mass.
- contrasts Zanobetti et al. (2004): ambient 5-d average PM_{2.5} was positively associated with BP among 62 patients with pre-existing heart disease

Timonen et al. 2005 (ULTRA study) JEAEE in press online

- Same subjects as Ibald-Mulli 2004, in-clinic HRV biweekly over 6 mo, single-site ambient PM
- 10,000 particles/cm³ UFP NC lag 2 was associated with changes in sympathetic/vagal tone:
 - ◆ 13.5 % decreased LF/HF
 - ◆ 2.9% increased HF/ (LF+HF)
- UFP associations were consistent across each city.
- PM_{2.5} was associated with LF/HF HRV only in Helsinki (6% decrease), HF/(LF+HF) only in Erfurt (1.3 % increase), and HF in Helsinki (14% decrease).


Ruckerl et al. 2005 Am J Resp Crit Care Med 173:432-441

- Erfurt panel of 57 males with CAD blood draws in clinic 12 times, every 2 weeks, in winter
- All ambient PM size fractions were similarly associated with:
 - Increased CRP (inflammation)
 - Increased ICAM-1 and vWf (endothelial dysfunction)
 - Increased prothrombin fragment 1+2, (coagulation) but not D-dimer, and Factor VII decreased
- EC & OC associated with all outcomes except CRP
- Similar associations for CO and NO₂

State of Knowledge is Limited by Exposure Data

- EPA regulates PM mass → focus of epi. research;
- Regulatory focus on toxic PM components is weak;
- Data on UFP toxicity by source is needed;
- UFP high spatial variability / proximity to sources;
- Identifying traffic-related sources of PM toxicity is relevant as it is likely the predominant UFP exposure.

Ultrafine vs. fine PM Spatial Distribution

Zhu et al. J Air Waste Manage Assoc 52:1032-1042.

Unanswered Questions

- impact of UFP exposure on the CV health of a susceptible populations: elderly, subjects with CV disease, diabetes, COPD, etc:
 - Long-term progression of atherosclerosis by repeated acute impacts on systemic inflammation / ox stress and thrombosis?;
 - Acute risks (e.g., MI, stroke) posed by effects on cardiovascular autonomic function?
- importance of UFP composition and related source characteristics to cardiovascular and inflammatory outcomes (toxicity? reactive oxygen species? primary vs. secondary?)

Causal pollutant components?

- Problems with exposure data:
 - exposure misclassification due to reliance on pollutant data measured at central regional sites;
 - Reliance on PM mass alone: components can vary independently over space & time.
- Solutions proposed:
 - ◆ Personal and microenvironmental PM exposures;
 - Measurement of UFP mass & particle number conc.;
 - Assessment of PM sources & components using tracer compounds and surrogates (e.g., EC + traffic proximity and in-vehicle assessment).

